Research basic and applied: We need them both

0 | Commentary

photo

Dr. Josh Freeman is the chair of the Department of Family Medicine at KU Med, a physician educator, and the author of the blog Medicine and Social Justice.

View larger photo

“Not every mystery has to be solved, and not every problem has to be addressed. That’s hard to get your brain around.”

This statement was the coda of a very good New York Times article, “Overtreatment is taking a harmful toll,” by Tara Parker-Pope.

The topic of the article, and the implication by the speaker, who was talking about her own family’s health care and unnecessary testing, is one that I have written about several times recently, in terms of both screening tests (“The Annual Physical: Screening, equity, and evidence,” July 4, 2012) and investigation and treatment of disease (“Rationing, Waste, and Useless Interventions.” June 21, 2012). Thus, I certainly agree that there is too much testing and too much intervention, and that it has a high cost in both dollars and in potential risk to people (the English word for what the health system calls “patients”).

So why do I feel a little uncomfortable with the quotation above?

I think it is because I very strongly believe that the decision on what tests to do and what interventions to take should be informed, as much as possible by the evidence. That evidence, I have also argued, should come from research, from well-designed studies, from science. This is also costly, but it is necessary. Your treatment should be based on evidence and probability gathered from studies of large populations. Without it, doctors and other health professionals are flying blind, with treatments based on their own experience, or worse yet “what makes sense.”

Sometimes the doctor’s own experience is a good guide, if they see a lot of patients with the same problem, and have reason to know what works. It is even better when they can bring in knowledge of the local community (e.g., what antibiotics are common bugs resistant to here? What are the common belief systems of the people that I care for?) and better yet if they actually know you, and what you value, and what your medical history is, and what your belief system is, and what is most likely to engage your effort in the interest of your health.

But it is better if the set of options from which they choose are all based in evidence. That something makes sense, I have often pointed out to medical students and residents, makes it a research question, not an answer. If something makes sense, based on what we already know, it is likely to be a more valuable thing to study than something that does not make sense.

However, until the study, or more likely several studies, are done we won’t know if it is, in fact, true. Human beings, both in terms of their biology and behavior, are too complex, and have too many different systems interacting with each other, to predict accurately how something that “makes sense” based on one of those dimensions is likely to turn out.

The thing is that not all research is immediately clinically relevant. Sometimes it is; the “Ottawa rules”, developed by research done in Canada, provide physicians with evidence based guidelines about when it is appropriate to do x-rays for injured ankles, knees, and feet – common problems. Other studies investigate whether particular drugs may provide real benefit to people with more uncommon problems.

This is particularly satisfying when the drug is not some new, expensive blockbuster but something cheap and common like aspirin or folic acid. Or when an old drug, all but abandoned for its original purpose, turns out to be very effective for another condition entirely. (One of my colleagues just demonstrated this for an old heart drug that works for a rare neuromuscular condition – coming soon to your local JAMA!)

But much research is at a very basic level. Before those drugs can be tested on particular conditions, they have to be developed. Before they can be developed, the biological and biochemical mechanisms upon which they have an effect have to be identified. Just as, before we can send rockets to the moon, we need to understand physics. Science, what in medicine we call “basic science”, has to continually move forward, and this requires not solely focusing on what might be of practical use tomorrow, but what is still a mystery that has to be solved.

I find it almost ironic that I am writing this defense of basic science research. Just recently, I was in NYC and went to brunch at the riverpark restaurant. On the block leading to it is a big vegetable gardens where they grow many of their own ingredients, much of it surrounded by a big wooden fence. And, since it is right there at Bellevue Hospital and NYU Medical Center and Rockefeller University, that fence is decorated with pictures and biographies of Nobel Prize winners in Medicine who had ties to NYC.

My reaction was that all of these people (even if they had MD degrees) were doing laboratory, basic science research, not clinical research, even though the prize is for “Medicine”. Of course, having won Nobel Prizes, their research led to important practical breakthroughs, but for every Nobel Prize winner who discovers something that will make a major difference in health, there are thousands and thousands of others, working in laboratories everywhere, and this work is necessary.

Personally, I don’t think it is necessarily necessary that it be done in medical schools, whether NYU or the University of Kansas, rather than in research institutes like Rockefeller or Kansas City’s Stowers Institute (or Karolinska in Sweden or the Pasteur Institute in France). I find, as a family doctor, that the fact that much basic research in human biology is done at medical schools leads to what I think are negative “side effects.”

I believe that there is an over-emphasis on teaching medical students biological sciences in great detail (often at the level of minutia) and an under-emphasis on the social sciences. I think that these areas are just as important — maybe more important for the practicing physician — but are usually not considered as “core” to medical student teaching.

In part this is because those working in the social sciences are most often “there”, at the main campus, not “here”, at the medical school. I am proud that the research conducted by faculty in my department is mostly community-based, looking at determinants of health and health disparities. But, whether biomedical research should be as important a part of medical schools as it usually is, or not, it is absolutely clear that it needs to occur, and that scientists need to solve mysteries.

Every mystery? Well, of course, that will never happen. And even for the ones they solve, the results are not always beneficial for folks. We can map the human genome! We can tell you if you and your family members are at increased risk for a terrible disease! Of course, often we cannot do anything about it, but it can make you depressed and pessimistic, and maybe you’ll lose your health insurance. So maybe we don’t need to tell your insurer, or even tell you, but getting to be able to do something about it first requires doing the science.

And of course there is a big difference between uncovering the mysteries of the universe, and even of finding evidence for what is appropriate diagnosis and treatment in populations, and in having to investigate everything in you. The father of another person quoted in the article developed delirium from overtreatment with drugs that was mistaken for dementia:

“I don’t know if we have too many specialists and every one is trying to practice their specialty, but it should not have happened.”

I agree; too many mistakes, too many errors (see Medical errors: to err may be human, but we need systems to decrease them, Aug. 10, 2012) can come from there being too many specialists combined with too little communication.

The quote at the top of this piece notes that not everything has to be addressed and that this is hard to wrap your brain around, but it shouldn’t be. All that research in the basic and clinical sciences should help us to understand when we need to investigate (do a CT scan for a black eye, in another example from the article, say) and when we don’t.

Often we should leave well enough alone.

Josh Freeman writes the blog Medicine and Social Justice. The opinions in the columns solely reflect those of the author. They aren't endorsed by the Kansas Health Institute, which seeks a broad range of opinion to stimulate discussion.